
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12

Insert Picture Here
MySQL 5.7 Performance:
Scalability & Benchmarks

Dimitri KRAVTCHUK
MySQL Performance Architect @Oracle

The following is intended to outline our general product
direction. It is intended for information purposes only, and may
not be incorporated into any contract. It is not a commitment to
deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development,
release, and timing of any features or functionality described
for Oracle’s products remains at the sole discretion of Oracle.

Are you Dimitri?.. ;-)

•Yes, it's me :-)
•Hello from Paris! ;-)
•Passionated by Systems and Databases Performance
•Previous 15 years @Sun Benchmark Center
•Started working on MySQL Performance since v3.23
•But during all that time just for “fun” only ;-)
•Since 2011 “officially” @MySQL Performance full time now
• http://dimitrik.free.fr/blog / @dimitrik_fr

Agenda

• Overview of MySQL Performance
• Performance improvements in MySQL 5.7 & Benchmark results
• Pending issues..
• Q & A

Why MySQL Performance ?...

Why benchmarking MySQL?..

•Any solution may look “good enough”...

Why benchmarking MySQL?..

•Until it did not reach its limit..

Why benchmarking MySQL?..

•And even improved solution may not resist to increasing load..

Why benchmarking MySQL?..

•And reach a similar limit..

Why benchmarking MySQL?..

•A good benchmark testing may help you to understand ahead
the resistance of your solution to incoming potential
problems ;-)

Why benchmarking MySQL?..

•But keep it in mind:
• Even a very powerful solution but

leaved in wrong hands may still be
easily broken!... :-)

The Main MySQL Performance Tuning
#1 Best Practice is... ???..

The Main MySQL Performance Tuning
#1 Best Practice is... ???..

USE YOUR BRAIN !!!... ;-)

The Main MySQL Performance Tuning
#1 Best Practice is... ???..

USE YOUR BRAIN !!!... ;-)

THE MAIN
SLIDE! ;-))

Think “Database Performance” from the beginning!

•Server:
• Having faster CPU is still better! 32 cores is good enough ;-)
• OS is important! - Linux, Solaris, etc.. (and Windows too!)

• Right malloc() lib!! (Linux: jemalloc, Solaris: libumem)

•Storage:
• Don't use slow disks! (except if this is a test validation goal :-))

• Flash helps when access is random! (reads are the most costly)
• FS is important! - ZFS, UFS, QFS, VxFS, EXT3, EXT4, XFS, etc..

• O_DIRECT or not O_DIRECT, AIO or not AIO, and be aware of bugs! ;-)
• Do some generic I/O tests first !! (Sysbench, IObench, iozone, etc.)

•Don't forget network !! :-) (faster is better, 10Gbit is great!)

malloc() !!!
I/O & FS !!

Test Workload

•Before to jump into something complex...
• Be sure first you're comfortable with

“basic” operations!

• Single table? Many tables?
• Short queries? Long queries?

•Remember: any complex load in fact is just
a mix of simple operations..

• So, try to split problems..
• Start from as simple as possible..

• And then increase complexity progressively..

•NB : any test case is important !!!
• Consider the case rather reject it with “I’m sure you’re doing something

wrong..” ;-))

“Generic” Test Workloads @MySQL

•Sysbench
• OLTP, RO/RW, 1-table, since v0.5 N-table(s), lots load options, deadlocks

•DBT2 / TPCC-like
• OLTP, RW, very complex, growing db, no options, deadlocks

• In fact using mostly only 2 tables! (thanks Performance Schema ;-))

• dbSTRESS
• OLTP, RO/RW, several tables, one most hot, configurable, no deadlocks

• LinkBench (Facebook)
• OLTP, RW, very intensive, IO-hungry..

•DBT3
• DWH, RO, complex heavy query, loved by Optimizer Team ;-)

Monitoring is THE MUST !
even don’t start to test anything

without monitoring.. ;-)

MySQL Enterprise Monitor

• Fantastic tool!
• Did you already try it?.. Did you see it live?..

Other Monitoring Tools

•Cacti, Zabbix, Nagios, Etc.....
• dim_STAT
• well, I'm using this one, sorry ;-)
• all graphs within presentation were made with it

• details are in the end of presentation..

Be sure you can trust your Benchmark results ;-)

•Know your HW platform limits
•Understand what your Workload is doing
•Keep in mind MySQL Server internals
• There is NO “Silver Bullet” !!!
• Think about the #1 MySQL Performance

Best Practice ;-))

Let’s analyze the following benchmark result..

• Test : fully random IO-bound OLTP_RO
• Storage limit : 60K reads/sec max
• 150K QPS ??

• WTF?.. ;-)

0

37500

75000

112500

150000

8 16 32 64 128 256 512 1024

QPS on OLTP_RO IO-bound

Q
ue

ry
 /

se
c

Concurrent Users

I/O limit

Let’s analyze the following benchmark result..

• Test : fully random IO-bound OLTP_RO
• Storage limit : 60K reads/sec max
• 150K QPS ??

• WTF?.. ;-)

0

37500

75000

112500

150000

8 16 32 64 128 256 512 1024

QPS on OLTP_RO IO-bound

Q
ue

ry
 /

se
c

Concurrent Users

I/O limit

 Cached !!!

Let’s analyze the following benchmark result..

• Test : fully random IO-bound OLTP_RO
• Storage limit : 60K reads/sec max
• 150K QPS ??

• WTF?.. ;-)

• The issue:
• the random ID for a row acces is not that random as expected..

• and with a higher workload the probability to get the same “random” row ID
on the same time and by different threads only increasing..

• workaround : for some of the tests started to use as many Sysbench
processes as user threads (1 connection = 1 sysbench process)..

0

37500

75000

112500

150000

8 32 128 512

QPS on OLTP_RO IO-bound

Q
ue

ry
 /

se
c

Concurrent Users

Analyzing Workloads: RO -vs- RW

•Read-Only (RO) :
• Nothing more simple when comparing DB Engines, HW configs, etc..
• RO In-Memory : data set fit in memory / BP / cache

• RO IO-bound : data set out-passing a given memory / BP / cache

•Read+Write (RW) :
• I/O is ALWAYS present ! - storage performance matters a lot !

• may be considered as always IO-bound ;-)
• RW In-Memory : same as RO, data set fit in memory, but :

• small data set => small writes

• big dataset => big writes ;-)

• RW IO-bound : data set out-passing a memory
• means there will be (a lot of?) reads !

• don’t forget that I/O random reads = I/O killer !

Read-Only Scalability @MySQL / InnoDB

•Depends on a workload..
• sometimes the limit is only within your memcpy() rate ;-)

•But really started to scale only since MySQL 5.7
• due improved TRX list management, MDL, THR_lock, etc..

• scaling up to 48 CPU cores for sure, reported on more cores too..
• Note : code path is growing with new features! (small HW may regress)

• IO-bound :
• could be limited by storage (if you’re not using a fast flash)
• or by internal contentions (InnoDB file_sys mutex)

• Limitations
• there are still some limitations “by design” (block lock, file_sys, etc..)
• all in TODO to be fixed, but some are needing a deep redesign

RO related starter configuration settings

•my.conf : join_buffer_size=32K
 sort_buffer_size=32K

 table_open_cache = 8000
 table_open_cache_instances = 16
 query_cache_type = 0

 innodb_buffer_pool_size= 64000M (2/3 RAM ?)
 innodb_buffer_pool_instances=32
 innodb_thread_concurrency = 0 / 32 / 64
 innodb_spin_wait_delay= 6 / 48 / 96

 innodb_stats_persistent = 1
 innodb_adaptive_hash_index= 0 / 1
 innodb_monitor_enable = '%'

Sysbench OLTP_RO Workloads @MySQL 5.7

•Simple ranges, Distinct ranges, SUM ranges, Ordered ranges

 Was not ok...

Story #1 : mysterious kernel contention

•Sysbench RO Distinct Selects
• 40cores-HT server

 Really not ok...

Story #1 : mysterious kernel contention (2)

•Sysbench RO Distinct Selects
• 40cores-HT server

•Profiler: 80.52% [kernel] [k] _spin_lock
 7.36% [kernel] [k] native_write_msr_safe
 2.08% [kernel] [k] smp_invalidate_interrupt
 0.82% [kernel] [k] find_next_bit
 0.76% [kernel] [k] flush_tlb_others_ipi
 0.69% [kernel] [k] __bitmap_empty
 0.53% [kernel] [k] native_flush_tlb
...

 Really not ok...

Story #1 : mysterious kernel contention (3)

•Sysbench RO Distinct Selects
• 40cores-HT server

•Profiler: 80.52% [kernel] [k] _spin_lock
 7.36% [kernel] [k] native_write_msr_safe
 2.08% [kernel] [k] smp_invalidate_interrupt
 0.82% [kernel] [k] find_next_bit
 0.76% [kernel] [k] flush_tlb_others_ipi
 0.69% [kernel] [k] __bitmap_empty
 0.53% [kernel] [k] native_flush_tlb
...

 73.13% mysqld [kernel.kallsyms] [k] _spin_lock
 |
 --- _spin_lock
 |
 |--99.96%-- flush_tlb_others_ipi
 | native_flush_tlb_others
 | flush_tlb_mm
 | zap_page_range
 | sys_madvise
 | system_call_fastpath
 | madvise
 | |
 | |--2.73%-- 0x7f03db1e1818
...

 But who is the killer ?...

Story #1 : mysterious kernel contention (4)

•Sysbench RO Distinct Selects
• 40cores-HT server

•And the killer is... - jemalloc !!! ;-)
• Distinct Selects workload is extremely hot on malloc (HEAP)

• in fact any SELECT involving HEAP temp tables will be in the same case..

• ex: small results via group by, order by, etc..

• jemalloc has a smart memory free stuff...

• trigger OS via madvise()..
• disabling this jemalloc feature resolving the problem ;-)

LD_PRELOAD=/apps/lib/libjemalloc.so ; export LD_PRELOAD
MALLOC_CONF=lg_dirty_mult:-1 ; export MALLOC_CONF

OLTP_RO Distinct Selects with “fixed” jemalloc

•Max QPS @40cores-HT :

Story #2 : contentions around a hot table

•Once again a game of contentions :
• improved TRX list ==> more hot MDL..
• more hot MDL ==> regression on all single-table workloads..

• improved MDL ==> more hot THR_lock..
• more hot THR_lock ==> regression on all single-table workloads..

• improved THR_lock ==> “next-level” locks become visible now!
• expectation for today : once the next level lock are fixed, there should be

no one new unexpected contention for a while ;-)

Story #2 : contentions around a hot table (2)

•Making-off @OLTP_RO Point-Selects, single-table :
• original | MDL-fix | MDL&THR_lock fix | original w/out MDL&THR_lock

Kudos Runtime !!!
NOTE : initially
worse than 5.6 !!

Sysbench OLTP_RO Point-Selects single-table

•Max QPS @40cores-HT :

Sysbench OLTP_RO Single-table

•Max QPS @40cores-HT :

RO In-Memory @MySQL 5.7

•Sysbench OLTP_RO 8-tables, 40cores-HT :

RO In-Memory @MySQL 5.7

•Sysbench OLTP_RO 8-tables, 32cores-HT :

RO In-Memory @MySQL 5.7

• 500K QPS Sysbench Point-Selects 8-tab, 32cores-HT :

RO In-Memory @MySQL 5.7

• 645K QPS Sysbench Point-Selects 8-tab, 40cores-HT :

Few words about RO scalability

•OLTP_RO Point-selects 8-tables, the same 40cores host
• IP socket & sysbench 0.4.13 -vs- UNIX socket & sysbench 0.4.8 :

Few words about RO scalability (bis)

•OLTP_RO Point-selects 1-table, the same 40cores host
• IP socket & sysbench 0.4.13 -vs- UNIX socket & sysbench 0.4.8 :

Few words about RO scalability (2)

•OLTP_RO Point-selects 8-tables
• MySQL 5.5 : Max QPS is @10cores...

Few words about RO scalability (3)

•OLTP_RO Point-selects 8-tables
• MySQL 5.6 : Max QPS is @20cores..

Few words about RO scalability (4)

•OLTP_RO Point-selects 8-tables
• MySQL 5.7 : Max QPS is @40cores (finally! ;-))

Few words about RO scalability (5)

•OLTP_RO Point-selects 8-tables
• Percona Server 5.6 : Max QPS is @20cores..

Few words about RO scalability (6)

•OLTP_RO Point-selects 8-tables
• MariaDB 10.1 : Max QPS is @20cores..

InnoDB Memcached

•MySQL 5.6 :
• initially introduced
• QPS : not too much better than SQL..

•MySQL 5.7 :
• improved TRX list code opened many doors ;-)
• Facebook => tech talk + test case

• InnoDB => 1M QPS ;-)
• 32cores-HT : 900K QPS

• 40cores-HT : 1000K QPS

• 48cores-HT : 1100K QPS

InnoDB Memcached @MySQL 5.7

•Over 1M (!) QPS on 48cores-HT :
 That’s it ;-)

Story #3 : Connect/sec performance

•A true TeamWork :
• starting with a bug report about PFS overhead on user connect..
• analyze of PFS issue is pointing also on some hot contentions around

connect / disconnect..
• PFS instrumentation is improved then by ServerGen Team

• while Runtime Team comes back with yet more ideas for “connect” code
• the result : x2 times better Connect/sec performance than before! ;-)

•NOTE :
• the Connect performance was already greatly improved in 5.6 and 5.7
• this was the next step in Connect speed-up ;-)

•Why Connect/sec performance is important?
• for many web sites it will be one of the main show-stoppers

OLTP_RO Connect Performance

• 40cores-HT 2.3Ghz : 65K Connect/sec
• 1 single point-select per Connect/Disconnect
• localhost

• the result is yet more higher on a faster CPU

Story #4 : strange scalability issue @dbSTRESS

•Preface:
• we already observed in the past some strange scalability problems
• most are gone since “G5 patch” (CPU false caching)

• but on dbSTRESS the problem remained..
• lack of needed instrumentation & profiling kept investigation on stand-by

• finally took some time to analyze it more in detail now ;-)

•Schema:
• State [1K] <= History [200M] <= Object [10M] => Section[100] =>Zone [10]

• SEL1 : for Object #id SELECT Object => Section =>Zone
• SEL2 : for Object #id SELECT all History => State

Story #4 : strange scalability issue @dbSTRESS (2)

• 32cores-HT, MySQL 5.7
• test : dbSTRESS-RO, AHI = off / on

Story #4 : strange scalability issue @dbSTRESS (3)

• 32cores-HT, MySQL 5.7
• test : dbSTRESS-SEL1, AHI = off / on

Story #4 : strange scalability issue @dbSTRESS (4)

• 32cores-HT, MySQL 5.7
• test : dbSTRESS-SEL2, AHI = off / on

Story #4 : strange scalability issue @dbSTRESS (5)

• 32cores-HT, MySQL 5.7
• test : dbSTRESS-H1, AHI = off / on

Story #4 : strange scalability issue @dbSTRESS (6)

• 32cores-HT, MySQL 5.7
• test : dbSTRESS-H1_hord, AHI = off / on

Story #4 : strange scalability issue @dbSTRESS (2/2)

• 32cores-HT, MySQL 5.7
• test : dbSTRESS-RO, AHI = off / on

Story #4 : strange scalability issue @dbSTRESS (3/2)

• 32cores-HT, MySQL 5.7
• test : dbSTRESS-SEL1, AHI = off / on

Story #4 : strange scalability issue @dbSTRESS (4/2)

• 32cores-HT, MySQL 5.7
• test : dbSTRESS-SEL2, AHI = off / on

Story #4 : strange scalability issue @dbSTRESS (5/2)

• 32cores-HT, MySQL 5.7
• test : dbSTRESS-H1, AHI = off / on

Story #4 : strange scalability issue @dbSTRESS (6/2)

• 32cores-HT, MySQL 5.7
• test : dbSTRESS-H1_hord, AHI = off / on

Story #4 : strange scalability issue @dbSTRESS (7)

• 32cores-HT, MySQL 5.7
• test case workload dbSTRESS-SEL2 <== the main show-stopper..
• amazing to see the x3 time performance difference between PK access

and secondary index..
• what do you see in your own workloads and productions systems?

• the fix is in TODO, but not for tomorrow..
• NOTE : pfs_* names in profiler are not always related to PFS ;-)

24925.00 19.5% pfs_end_rwlock_rdwait_v1 mysqld-575-withPFS-O3-Sep
11686.00 9.2% pfs_unlock_rwlock_v1 mysqld-575-withPFS-O3-Sep
 8554.00 6.7% pfs_start_rwlock_wait_v1 mysqld-575-withPFS-O3-Sep
 4503.00 3.5% btr_cur_search_to_nth_level(dict_inde mysqld-575-withPFS-O3-Sep
 4413.00 3.5% rec_get_offsets_func(unsigned char co mysqld-575-withPFS-O3-Sep
 3536.00 2.8% buf_page_get_gen(page_id_t const&, pa mysqld-575-withPFS-O3-Sep
 3056.00 2.4% pfs_rw_lock_s_unlock_func(rw_lock_t*) mysqld-575-withPFS-O3-Sep
 ...

Read+Write Workloads Scalability @MySQL

•Huge progress is already here!
•However, not yet as good as Read-Only..
• Performance continues to increase with more CPU cores
• But on move from 16 to 32cores-HT you may gain only 50% better

• Better performance on a faster storage as well
• But cannot yet use a full power of fast flash for today..

• Work in progress ;-)
• Internal contentions & Design limitations are the main issues here..

Read+Write Performance @MySQL / InnoDB

• Transactional processing
• your CPU-bound transactional processing defines your Max possible TPS
• with a bigger volume / more IO / etc. => Max TPS will not increase ;-)

•Data Safety
• binlog : overhead + bottleneck (be sure you have binlog group commit)
• InnoDB checksums : overhead (reasonable since crc32 is used)

• innodb_flush_log_at_trx_commit = 1 : overhead + bottleneck
• InnoDB double write buffer : KILLER ! overhead + huge bottleneck..

• need a fix / re-design / etc. in urgency ;-)

• Fusion-io atomic writes is one of (true support in MySQL 5.7)

• Using EXT4 with data journal is another one

• but a true re-design is still preferable ;-)

Impact of “safety” options..

•OLTP_RW 32x10M-tables @Percona-5.6
• trx=2 | trx=1 + chksum=1 | dblwr=1 | trx=1 + chksum=1 + dblwr=1

TRX=2 TRX=1, cheksum=1 dblwr=1 TRX=1,checksum=1,dblwr=1

RW related starter configuration settings

•my.conf : innodb_file_per_table
 innodb_log_file_size=1024M
 innodb_log_files_in_group=3 / 12 / ...
 innodb_checksum_algorithm= none / crc32
 innodb_doublewrite= 0 / 1
 innodb_flush_log_at_trx_commit= 2 / 1
 innodb_flush_method=O_DIRECT
 innodb_use_native_aio=1
 innodb_adaptive_hash_index=0

 innodb_adaptive_flushing = 1
 innodb_flush_neighbors = 0
 innodb_read_io_threads = 16
 innodb_write_io_threads = 16
 innodb_io_capacity=15000
 innodb_max_dirty_pages_pct=90
 innodb_max_dirty_pages_pct_lwm=10
 innodb_lru_scan_depth=4000
 innodb_page_cleaners=4

 innodb_purge_threads=4
 innodb_max_purge_lag_delay=30000000
 innodb_max_purge_lag=1000000

 binlog ??

Sysbench OLTP_RW In-Memory

•Sysbench OLTP_RW 1-table TRX2 @40cores-HT :
• TRX2 : innodb_flush_log_at_trx_commit = 2

Sysbench OLTP_RW In-Memory

•Sysbench OLTP_RW 1-table TRX1 @40cores-HT :
• TRX1 : innodb_flush_log_at_trx_commit = 1

Sysbench OLTP_RW In-Memory

•Sysbench OLTP_RW 8-tables TRX2 @40cores-HT :
• TRX2 : innodb_flush_log_at_trx_commit = 2

Sysbench OLTP_RW In-Memory

•Sysbench OLTP_RW 8-tables TRX1 @40cores-HT :
• TRX1 : innodb_flush_log_at_trx_commit = 1

Sysbench OLTP_RW In-Memory

•Sysbench OLTP_RW 8-tables TRX1 @40cores-HT :
• MySQL 5.5 : Max TPS @20cores

Sysbench OLTP_RW In-Memory

•Sysbench OLTP_RW 8-tables TRX1 @40cores-HT :
• MySQL 5.6 : Max TPS @40cores

Sysbench OLTP_RW In-Memory

•Sysbench OLTP_RW 8-tables TRX1 @40cores-HT :
• MySQL 5.7 : Max TPS @40cores

Sysbench OLTP_RW In-Memory

•Sysbench OLTP_RW 8-tables TRX1 @40cores-HT :
• Percona Server 5.6 : Max TPS @40cores

Sysbench OLTP_RW In-Memory

•Sysbench OLTP_RW 8-tables TRX1 @40cores-HT :
• MariaDB 10.1 : Max TPS @40cores

Sysbench OLTP_RW In-Memory

•Sysbench OLTP_RW 8-tables TRX1 @40cores-HT :
• MySQL 5.7-dev3 : Max TPS @40cores

Sysbench OLTP_RW In-Memory

•Max TPS configs :
mysql> select max(tps), t_engine, t_ccr, spin_delay, trx_commit
 from Bench where t_name = 'sb_OLTP_RW_1M_8tab-ps'
 and t_tag= '575_DMR-RW' and t_cpu like '40cores%'
 group by 2,3,4,5 order by 1 desc limit 10;

+----------+-------------------+-------+------------+------------+
| max(tps) | t_engine | t_ccr | spin_delay | trx_commit |
+----------+-------------------+-------+------------+------------+
17617	mysql576_futex_V3	64	96	1
17497	mysql576_futex_V3	0	96	1
17438	mysql575	64	96	2
17307	mysql575	0	96	2
17231	percona5620	64	96	1
17197	percona5620	0	96	1
17168	percona5620	0	96	2
17113	percona5620	64	96	2
16963	mysql576_futex_V3	64	96	2
16780	mysql576_futex_V3	0	96	2
+----------+-------------------+-------+------------+------------+
10 rows in set (0.03 sec)

mysql>

RW IO-bound

•Still data In-Memory, but much bigger volume :
• more pages to flush for the same TPS rate

•Data bigger or much bigger than Memory / cache / BP :
• the amount of free pages becomes short very quickly..

• and instead of mostly IO writes only you’re starting to have IO reads too
• these reads usually mostly random reads

• if your storage is slow - reads will simply kill your TPS ;-)
• if your storage can follow - once you’re hitting fil_sys mutex you’re done

• as well LRU flushing may become very heavy..

•NOTE:
• using AIO + O_DIRECT seems to be the most optimal for RW IO-bound

• but always check yourself ;-)

RW IO-bound “In-Memory”

• Impact of the database size
• with a growing db size the TPS rate may be only the same or worse ;-)
• and required Flushing rate may only increase..

• ex.: DBT2 workload :
• 64 users, db volume: 50W, 100W, 250W, 500W

RW IO-Bound : Test your Filesystem before to deploy

• LinkBench 150G
• safety options on 64usr, Fusion-io
• EXT4 -vs- NVMFS -vs- XFS

EXT4 NVMFS XFS

RW IO-Bound : Consider a fast storage

• InnoDB Flushing in MySQL 5.7 & storage:
• DBT2 512Wx8, 64usr, each test first with 1 then with 4 cleaners
• XFS@SSD | EXT4@SSD | XFS@LSI-F80 | EXT4@LSI-F80

SSD LSI-F80 flash

RW IO-bound “Out-of-Memory”

• The “entry” limit here is storage performance
• as you’ll have a lot of IO reads..

•Once storage is no more an issue :
• you may hit internal contentions (ex. InnoDB file_sys mutex)

• or other engine design limitations..
• sometimes a more optimal config settings may help..

• but sometimes not ;-)

RW LRU-bound : 5.5 is out of the game..

•Sysbench OLTP_RW 10M x32-tables
• Users: 8, 16, 32 .. 1024
• MySQL : 5.7 / 5.6 / 5.5

 Please, upgrade me to 5.6 !!!

High Concurrency Tuning

• If bottleneck is due a concurrent access on the same data (due
application design) – ask your dev team to re-design ;-)

• If bottleneck is due MySQL/InnoDB internal contentions, then:
• If you cannot avoid it, then at least don't let them grow ;-)

• tune InnoDB spin wait delay to improve your Max QPS (dynamic)
• innodb_thread_concurrency=N to avoid QPS drop on usr++ (dynamic)
• CPU taskset / prcset (Linux / Solaris, both dynamic)

• Thread Pool
• NOTE:

• things with contentions may radically change since 5.7, so stay tuned ;-)

• InnoDB thread concurrency feature was improved in 5.6 and 5.7

• the best working in 5.7, and using innodb_thread_concurrency=64 by default
now makes sense..

Thread Pool in old MySQL 5.7 @Heavy OLTP_RW

Concurrency tuning on OLTP_RW @MySQL 5.7

•OLTP_RW 10M @MySQL 5.7 40cores-HT :
• load conditions: TRX = 2 -vs- TRX = 1
• cooking receipt : concurrency (ccr) & spin wait delay (sd)

Concurrency tuning on OLTP_RW @MySQL 5.7-dev3

•OLTP_RW 10M @MySQL 5.7-dev3 40cores-HT :
• load conditions: TRX = 2 -vs- TRX = 1
• cooking receipt : concurrency (ccr) & spin wait delay (sd)

Impact of “Write” queries on MySQL Performance

• IO Bound “out-of-memory”
• 64usr, growing R/W ratio, near x2 times TPS drop at the end..
• 20cores | 40cores | 40cores & spin delay = 96

So, work continues..
stay tuned... ;-)

Few words about dim_STAT (if you’re asking ;-))

•All graphs are built with dim_STAT (http://dimitrik.free.fr)
• All System load stats (CPU, I/O, Network, RAM, Processes,...)
• Manly for Solaris & Linux, but any other UNIX too :-)

• Add-Ons for Oracle, MySQL, PostgreSQL, Java, etc.
• MySQL Add-Ons:

• mysqlSTAT : all available data from “show status”

• mysqlLOAD : compact data, multi-host monitoring oriented

• mysqlWAITS : top wait events from Performance SCHEMA

• InnodbSTAT : most important data from “show innodb status”

• innodbMUTEX : monitoring InnoDB mutex waits

• innodbMETRICS : all counters from the METRICS table

• And any other you want to add! :-)

THANK YOU !!!

• All details about presented materials you may find on:

• http://dimitrik.free.fr - dim_STAT, dbSTRESS, Benchmark Reports, etc.

• http://dimitrik.free.fr/blog - Articles about MySQL Performance, etc.

