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Are you Dimitri?.. ;-)

• Yes, it's me :-)  
• Hello from Paris! ;-) 
• Passionated by Systems and Databases Performance 
• Previous 15 years @Sun Benchmark Center 
• Started working on MySQL Performance since v3.23 
• But during all that time just for “fun” only ;-) 
• Since 2011 “officially” @MySQL Performance full time now 
• http://dimitrik.free.fr/blog  / @dimitrik_fr

http://dimitrik.free.fr/


Agenda

•  Overview of MySQL Performance 
•  Performance improvements in MySQL 5.7 & Benchmark results 
•  What can be Tuned / and what should be Avoided 
•  Pending Issues and Workarounds.. 
•  Q & A 
•  As well may be not exactly in the proposed order ;-) 
• (and sorry in advance for many “smiles” in the slides ;-))
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Tuning & Benchmarking…

• there is no Tuning without Benchmarking ;-) 
• you have to validate somehow your tuning, right ? 

• as there is no Benchmarking without Tuning ;-) 
• it’s not a good idea to check various tuning on production systems, right ? 



Why Benchmarking MySQL ?...



Why benchmarking MySQL?..

• Any solution may look “good enough”...



Why benchmarking MySQL?..

• Until it did not reach its limit..



Why benchmarking MySQL?..

• And even improved solution may not resist to increasing load..



Why benchmarking MySQL?..

• And reach a similar limit..



Why benchmarking MySQL?..

• A good benchmark testing may help you to understand ahead the 
resistance of  your solution to incoming potential problems ;-)



Why benchmarking MySQL?..

• But keep it in mind:  
• Even a very powerful solution but  

leaved in wrong hands may still be  
easily broken!... :-)



The Game of priorities & compromises...

• You’ll always have a sacrifice of one from these 3 :

Security
Low Cost

Performance



The Main MySQL Performance  
Best Practice #1 is... ???..
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The following materials are about…

• Single MySQL Instance Performance Tuning & Scalability 
• single HW host 
• no replication 
• just to understand how far your single MySQL Server instance may scale.. 
• what are the limits 
• what to care about ahead 
• what can be tuned 
• which workaround to use 
• which situations are absolutely to avoid..



Why Scalability ?..

• CPU Speed : no more "free lunches" ;-) 
• will x2 times faster CPU increase your performance by x2 ?.. 

• CPU cores : more and more over year-to-year.. 
• Intel 2CPU : 8cores-HT 
• Intel 2CPU : 12cores-HT 
• Intel 2CPU : 16cores-HT 
• Intel 2CPU : 20cores-HT 
• Intel 2CPU : 36cores-HT (2015) 
• … 
• 2015: 4cores ==> “commodity HW” for a SmartWatch ;-) 

• Scalability In Few Words : 
• your software is able to deliver a higher throughput if more HW resources are available.. 
• (then, scaling it well or not is another story ;-))



A B-shit Slide…

• Odd interpretation of Scalability…



A B-shit Slide… (2)

• Odd interpretation of Scalability…

Scale up to N connections

Then, keep the load…

Both are scaling up to 64 connections, 
but only one is able to keep a higher load..



MySQL on High Load

• Once you’ve reached your Max TPS on your system : 
• try to understand first what is limiting you? (I/O, CPU, Network, MySQL internals?) 
• the next goal then: to avoid a TPS “regression” on a higher load 

• How to keep your Max TPS on a higher load too? 
• the dumb rule : avoid to have a higher load! ;-) 
• seriously : 

• usually all you need is to find a way to do not let you workload concurrency out-pass the levels 
your reaching on the TPS Max, that’s all.. 

• InnoDB thread concurrency helps here (yet more improved in MySQL 5.7) 
• InnoDB spin wait delay tuning helps to lower mutexes / rw-locks waits impact 
• ThreadPool  

• NOTE : there is no “magic” for response time : 
• if your Max TPS you’re reaching on N users 
• and able to keep the same Max TPS on N x2 users (or x3, x4, etc.) 
• your response time may only grow! (and be x2 times bigger (or x3, or x4, etc.)) 



Thread Pool in old MySQL 5.7 @Heavy OLTP_RW



MySQL & CPU Usage

• CPU chips progress: 
• CPU = 1 CPU (1 vcpu) 
• CPU = N cores (N vcpu) 
• CPU = N cores, M core threads (NxP vcpu) 
• … 

• How many really parallel tasks your CPU is able to execute?? 
• as many as how many vcpu are really able to run in parallel! 
• for ex. you have 32cores-HT :  

• only 32 concurrent MySQL threads may be executed on the same time 
• is HT helping? - yes 
• is HT makes 32cores be equal to 64cores? - no 
• if my system is reporting to have CPU 50% busy on my MySQL workload, does it mean I have a 

50% marge in CPU usage? — NO!.. ;-) 
• my workload is pure CPU bound, I’m reaching N TPS on 64 users and I’m claiming I’m getting x5 

higher (Nx5) TPS on 512 users! — well, you’re lying somewhere ;-)) 



Starting point : “Tuning” by expected activity

• Workload expectations : 
• OLTP : ok 
• DWH : not an easy life ;-) no parallelization, optimizer tips, mixed solutions, etc.. 

• HW according expected load : 
• low load : small box, few but fast CPU(s) 
• high load : big box, many CPU(s) vs faster CPU(s) 
• storage : always important when you do IO 

• extremely important when you do random IO reads !!! 
• RAM : more you have => better you are doing ;-) 

• cache, sort, heap, purge, etc.. 
• however, be sure you’re using it (don’t waste ;-)) 

• network: lower possible latency 

• (think about priority & compromise slide)



Starting point : “Tuning” OS/FS related choices

• Linux : 
• LD_PRELOAD MT-oriented malloc: jemalloc, tcmalloc, etc. 
• right IO scheduler (not cfq)  
• right FS/ mount options/ AIO/ O_DIRECT/ etc.. 

• nobarriers,noatime,nodirtime,… 

• Solaris : 
• LD_PRELOAD MT-oriented malloc: mtmalloc, umem 
• UFS/forcedirectio 
• ZFS 

• ZFS Appliance 



MySQL Performance Evolution

• From version-to-version : 
• 3.23 => 4.0 => 4.1 => 5.0 => 5.1 => 5.4 => 5.5 => 5.6 => 5.7 … 
• More features => longer code path.. (just google: “What is new in MySQL 5.7”) 
• MySQL/InnoDB code is very sensible to CPU cache(s).. 
• Going slower : 

• single-user.. 
• low-load.. 
• small-HW.. 

• Going faster : 
• where scalability was improved 
• higher-load.. 
• newer/bigger-HW..
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4.1   
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Performance Investigation Efforts (relative)

• report a problem.. 
• point on the source of the problem.. 
• suggest what should be fixed.. 
• suggest how it should be fixed… 
• implement the final fix…



Benchmarking & Tuning…

• depending on the MySQL version : 
• some things you “may tune” 
• some things you “may just accept” ;-) 
• (e.g. you need 5.6 to have binlog group commit, etc.) 

• so, you need to have a clear idea about : 
• which situation you can always solve by tuning, so no worry.. 
• which situation you may only avoid, so have to consider and take care about.. 
• which situation was fixed or can be tuned in a newer MySQL version 
• don’t create artificial limitations yourself (e.g. if 32GB REDO is allowed - use it!) 
• be sure what is really important for you! 

• general advice : validate & move to MySQL 5.7 asap ;-)



Only a real test gives you a real answer...

• Avoid to tweak on production systems ;-) 
• Rather try to reproduce your load on a similar, but dedicated to test server 
• Collect test cases for all the most critical parts.. 

• Want to simulate your production workload?.. 
• Then just simulate it! (many SW available, not always OSS/free) 
• Hard to simulate? - adapt some generic tests 

• Want to know capacity limits of a given platform? 
• Still try to focus on the test which are most significant for you! 

• Want just to validate config settings impacts? 
• Focus on tests which are potentially depending on these settings 

• Well, just keep thinking about what you're doing ;-)



Test Workload

• Before to jump into something complex... 
• Be sure first you're comfortable with  

“basic” operations! 
• Single table? Many tables? 
• Short queries? Long queries? 

• Remember: any complex load in fact is just  
a mix of simple operations.. 

• So, try to split problems.. 
• Start from as simple as possible.. 
• And then increase complexity progressively.. 

• NB : any test case is important !!! 
• Consider the case rather reject it with “I’m sure you’re doing something wrong..” ;-))



“Generic” Test Workloads @MySQL

• Sysbench 
• OLTP, RO/RW, N-tables, lots test workload load options, deadlocks 

• DBT2 / TPCC-like 
• OLTP, RW, very complex, growing db, no options, deadlocks 
• In fact using mostly only 2 tables! (thanks Performance Schema ;-)) 

• dbSTRESS 
• OLTP, RO/RW, several tables, one most hot, configurable, no deadlocks 

• iiBench 
• pure INSERT (time series) + SELECT 

• LinkBench (Facebook) 
• OLTP, RW, very intensive, IO-hungry.. 

• DBT3 
• DWH, RO, complex heavy query, loved by Optimizer Team ;-)



Monitoring is THE MUST !  
even don’t start to do anything  

without monitoring.. ;-)



MySQL Enterprise Monitor

• Fantastic tool! 
• Did you already try it?.. Did you see it live?..



Other Monitoring Tools

• Cacti, Zabbix, Nagios, Solarwinds, etc….. 
• dim_STAT  

• well, I'm using this one, sorry ;-) 
• all graphs within presentation were made with it 
• details are in the end of presentation..



A Word about Monitoring…

• always validate the impact of your Monitoring on your Production ;-) 
• taking 1sec measurements is fine, except : 

• if it’s eating 100% CPU time on one or more CPU cores.. 
• reducing your network traffic / latency.. 
• eats your RAM, etc. 

• avoid to be too much intrusive on MySQL/InnoDB internals.. 
• you may easily create an additional overhead  
• as well you may add artificial locks on your workflow  

• ex: in 5.6 run in loop “show processlist”, etc.. 

• well, think about what you’re doing (#1 best practice once again ;-))



System Monitoring (Linux)

• Keep an eye on : 
• CPU Usage%  
• Run queue 
• RAM / swap 
• Top processes 
• I/O op/sec / MB/sec 
• Network traffic 
• etc..

Credits : Brendan GREGG (http://www.brendangregg.com)

http://www.brendangregg.com


The Infinitive Loop of Database Tuning...

Server

Storage

OS

DB Engine

Application

•#1 Monitoring 
•#2 Tuning 
•#3 Optimization 
•#4 Improvement(s) 
•#5 … 
•... 
•goto #1



The Infinitive Loop of Database Tuning...

Server

Storage

OS

DB Engine

Application

•#1 Monitoring 
•#2 Tuning 
•#3 Optimization 
•#4 Improvement(s) 
•#5 … 
•... 
•goto #1

Even if in 
 95% cases  
the problem 
is here!!! :-)



What to Monitor ?..

• Everything ;-) 
• The main goal of Monitoring : 

• to understand what is changed once you’re hitting a performance problem.. 
• (all the diff between “good” -vs- “bad”) 
• otherwise all this is useless ;-)) 

• Then : 
• be sure the problem is coming from MySQL.. 
• be sure you’re not hitting any system limits !! 
• be sure you’re not hitting MySQL internal limitations..



Using “perf” (Linux)  — low impact profiler

• Use cases : 
• # perf top -z --stdio                                     <== live monitoring 
• # perf record -a -g -f -F 99 -- sleep 20        <== record 20sec of data 
• # perf report | more                                     <== report from collected data 
• # perf annotate                                            <== jump to source code  

• links : 
• https://perf.wiki.kernel.org                           <== main resource 
• http://www.brendangregg.com/perf.html     <== the most fun stuff !!!  

• Thanks Brendan! ;-))

https://perf.wiki.kernel.org
http://www.brendangregg.com/perf.html


Profiling example: # perf top -z --stdio

• Observations : 
• nothing special.. 
• mysqld is the top running process, fine..



Profiling example (2)

• Observations : 
• memcpy() is the most hot, called by mysqld (check call-stack) 
• nothing to do.. (check apps, SELECT ranges, etc..)



Profiling example (3)

• Observations : 
• my_hash_sort_simple() is the most hot (mysqld) 
• nothing to do.. (check apps, memory temp tables usage, query plan, etc..)



Profiling example (4)

• Observations : 
• _spin_lock() is the most hot (or ut_delay, or rw_lock*, or *lock*, etc. ) 
• you’re hitting a lock contention! (MySQL or not) 
• if MySQL : analyze PFS waits, innodb status, mutex status, etc..



MySQL Internals Overview

• Multi-Threaded 
• fast context switch 
• all threads see all data 
• so, data lock is needed 
• design is very important 
• MT malloc() !!!



What are mutexes?...
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What are mutexes?...
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What are mutexes?...



MySQL Internals RE-Overview ;-)

• Multi-Threaded 
• fast context switch 
• all threads see all data 
• so, data lock is needed 
• design is very important 
• MT malloc() !!!



InnoDB Internals Overview

• Also Multi-Threaded ;-) 
• user threads 
• “background” threads : 

• Master thread 
• Cleaner thread(s) 
• Purge thread(s) 
• IO threads 

• mutexes and RW-locks 
• NOTE : current RW-locks implementation is poorly scaling.. 

• most famous in the past : 
• MySQL : LOCK_open 
• InnoDB : kernel_mutex



Performance Schema: Gold Mine of Info!

• Just a point about how to analyze mutex lock contentions
mysql> select EVENT_NAME, max(SUM_TIMER_WAIT)/1000000000000 as WaitTM  
       from events_waits_summary_global_by_event_name group by 1 order by 2 desc limit 5; 
+-------------------------------------------+------------+ 
| EVENT_NAME                                | WaitTM     | 
+-------------------------------------------+------------+ 
| wait/io/file/innodb/innodb_data_file      | 24404.2548 | 
| idle                                      |  1830.1419 | 
| wait/synch/rwlock/innodb/hash_table_locks |    25.2959 | 
| wait/synch/mutex/innodb/fil_system_mutex  |    24.9102 | 
| wait/io/file/innodb/innodb_log_file       |    11.2126 | 
+-------------------------------------------+------------+ 
5 rows in set (0.03 sec)

mysql> select EVENT_NAME, max(SUM_TIMER_WAIT)/1000000000000 as WaitTM  
        from events_waits_summary_by_instance group by 1 order by 2 desc limit 5; 
+-------------------------------------------+----------+ 
| EVENT_NAME                                | WaitTM   | 
+-------------------------------------------+----------+ 
| wait/io/file/innodb/innodb_data_file      | 791.3204 | 
| wait/synch/mutex/innodb/fil_system_mutex  |  25.8183 | 
| wait/synch/rwlock/innodb/btr_search_latch |   5.2865 | 
| wait/io/file/innodb/innodb_log_file       |   4.6977 | 
| wait/synch/rwlock/sql/LOCK_grant          |   4.4940 | 
+-------------------------------------------+----------+ 
5 rows in set (0.06 sec)

+



Visual explanation : MyISAM -vs- InnoDB ;-)

• MyISAM -vs- InnoDB 
• (table locking -vs- row locking)

MyISAM InnoDB



Analyzing Workloads: RO -vs- RW

• Read-Only (RO) : 
• Nothing more simple when comparing DB Engines, HW configs, etc.. 
• RO In-Memory : data set fit in memory / BP / cache 
• RO IO-bound : data set out-passing a given memory / BP / cache 

• Read+Write (RW) : 
• I/O is ALWAYS present ! - storage performance matters a lot ! 
• may be considered as always IO-bound ;-) 
• RW In-Memory : same as RO, data set fit in memory, but : 

• small data set => small writes 
• big dataset => big writes ;-) 

• RW IO-bound : data set out-passing a memory 
• means there will be (a lot of?) reads ! 

• NOTE : Random Read (RR) operation is the main IO-bound killer !!!



From where we’re coming with MySQL 5.7 ?..

• MySQL 5.5 : RO & RW  
• QPS Max on 16cores 
• worse on 32cores 
• Note: RW out-pass RO! 



From where we’re coming with MySQL 5.7 ?..

• MySQL 5.6 : RO & RW  
• not lower on 32cores!! ;-) 
• RW out-pass RO !!..?? 



From where we’re coming with MySQL 5.7 ?..

• MySQL 5.7.1 : RO & RW  
• more stable than 5.6 
• RW out-pass RO !!..



Read-Only Scalability @MySQL / InnoDB

• Depends on a workload.. 
• sometimes the limit is only within your memcpy() rate ;-) 

• But really started to scale only since MySQL 5.7 
• due improved TRX list management, MDL, THR_lock, etc.. 
• scaling up to 64 CPU cores for sure, reported on more cores too.. 
• Note : remind my “scalability” notes ;-)) 
• Note : code path is growing with new features! (small HW may regress) 

• IO-bound : 
• could be limited by storage (if you’re not using a fast flash) 
• or by internal contentions (InnoDB file_sys mutex) 

• Limitations 
• there are still some limitations “by design” (block lock, file_sys, etc..) 
• all in TODO to be fixed, but some are needing a deep redesign 



RO related starter configuration settings

• my.conf : !
  join_buffer_size=32K  
  sort_buffer_size=32K 
!
  table_open_cache = 8000 
  table_open_cache_instances = 16 
  query_cache_type = 0 
  
  innodb_buffer_pool_size= 64000M (2/3 RAM ?) 
  innodb_buffer_pool_instances = 32 
  innodb_thread_concurrency = 0 / 32 / 64 
  innodb_spin_wait_delay= 6 / 48 / 96 
!
  innodb_stats_persistent = 1 
  innodb_adaptive_hash_index= 0 / 1 
  innodb_monitor_enable = '%' 
 



Sysbench OLTP_RO Workloads

• Available Test Workloads : 
• Point-Select : a row read by PK id (most aggressive workload, extremely fast queries) 
• Simple-Ranges : read N rows via PK range (hot on memcpy() and hash) 
• Order-Ranges : as Simple-Ranges, but ordered by non-indexed column (hot on the same) 
• SUM-Ranges : read SUM value from N rows in PK range (hot on the same) 
• Distinct-Ranges : as Order-Ranges, but DISTINCT values from non-indexed column 

(extremely hot on in-memory temp tables create/drop).. 
• RO_Connect : a single Point-Select with re-connect 

• OLTP_RO : 
• composed of :  

• x10 Point-Selects  
• x1 Simple-Range, N=100 
• x1 Order-Range, N=100 
• x1 SUM-Range, N=100 
• x1 Distinct-Range, N=100

Basic Operations “Entry Ticket”



Entry Ticket : RO_Connect

• Many web apps cannot use persistent connections 
• connect => Query(s) => disconnect @40cores-HT
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Entry Ticket : RO_Connect

• Many web apps cannot use persistent connections 
• connect => Query(s) => disconnect @72cores-HT 
• NOTE: it’s not because of the number of CPU cores !!! (but CPU chip)



Entry Ticket : RO_Connect in 5.7

• Many web apps cannot use persistent connections 
• connect => Query(s) => disconnect 
• there was even 70K Connect/sec, but new features over 2 years.. 
• 5.8 expectations : to do much more than this ;-)



RO Point-Selects @MySQL 5.7  (Sep.2013)

• 500K QPS Sysbench Point-Selects 8-tab, 32cores-HT :



RO Point-Selects @MySQL 5.7 (Oct.2014)

• 645K QPS Sysbench Point-Selects 8-tab, 40cores-HT :



RO Point-Selects @MySQL 5.7 (Oct.2015)

• 1.6M (!!) QPS Sysbench Point-Selects 8-tab, 72cores-HT :



RO Point-Selects @MySQL 5.7 (Oct.2015)

• 1.6M (!!) QPS Sysbench Point-Selects 8-tab, HW Progress :



OLTP_RO : 8-tables

• Sysbench OLTP_RO 1Mx8-tables 
• 40cores-HT



OLTP_RO : 8-tables

• Sysbench OLTP_RO 1Mx8-tables - ~1M (!!) QPS 
• 72cores-HT



OLTP_RO : 1-table

• Sysbench OLTP_RO 10M 
• 40cores-HT



OLTP_RO : 1-table

• Sysbench OLTP_RO 10M 
• 72cores-HT



RO Pending Issues…

• InnoDB Adaptive Hash Index (AHI) 
• implemented with a global RW-lock 
• InnoDB RW-locks are not scaling by design (CPU cache syncs) 
• using table partitions helps to split indexes 
• using AHI partitions (5.7) helps to split RW-locks (coop. with Percona) 

• NOTE: and this is creating 20% regression on DBT3 benchmark (single-thread).. 
• just to mention how the code is sensible today ;-)) 

• yet far from fixed.. 
• 5.8 : AHI re-write / re-design



RO Pending Issues…

• PK vs Sec.IDX lookups 
• AHI helps 
• using covering indexes helps 
• reading less rows per query helps too..  (in ex: 10/20/40.. 320 rows) 
•    PK               Cov.IDX     Sec.IDX          PK              Cov.IDX      Sec.IDX       
 
 
 
 
 
 
 
 
                        AHI=off                       |                        AHI=on



RO Pending Issues…

• InnoDB Block Lock 
• seen when the same pages are accessed concurrently.. 
• how to see : “show mutex” is back ;-) 
• workarounds :  

• avoid such an access pattern, don’t do this ;-) 
• use a smart query cache (like ProxySQL), or row cache (memcached, etc.).. 

• expected to be fixed in 5.8 : page re-design 
• but nothing yet promised.. ;-)



• Could we consider it as a bug?.. 
• not really, as it’s “by design” ;-) 
• regression? - nor either, as it was always like this ;-) 
• So? what to do? - Continue to complain and then you’ll see it fixed ;-)

When hitting “by design” issues..



Read-Only : IO-bound

• 5.5 : hmm.. 
• 5.6 / 5.7 : 
• LRU driven : just page eviction, see METRICS stats 
• HDD : limited by your I/O layer.. 
• SDD : limited by your I/O layer.. 
• Really Fast Flash (LSI, Fusion-io, etc.) : 

• avg load : follow I/O performance 
• high load: fil_sys mutex contention + kernel FS lock! 

• also consider : innodb_old_blocks_time & innodb_old_blocks_pct  

• 5.7 : 
• excessive page scan is fixed



Read+Write (RW) Workloads Scalability @MySQL 5.7

• Huge progress is already here too! 
• improved index locking 
• reduced lock_sys mutex contention 
• parallel flushing + improved flushing design 
• much better observability of internals 
• etc.. 

• However, not yet as good as Read-Only.. 
• Performance continues to increase with more CPU cores 
• But on move from 16 to 32cores-HT you may gain only 50% better 
• Better performance on a faster storage as well 
• But cannot yet use a full power of fast flash for today.. 
• Work in progress ;-) 
• Internal contentions & Design limitations are the main issues here.. 
• still many things are in pipe & prototype..



Read+Write Performance @MySQL / InnoDB

• Transactional processing 
• your CPU-bound transactional processing defines your Max possible TPS 
• with a bigger volume / more IO / etc. => Max TPS will not increase ;-) 

• Data Safety 
• binlog : overhead + bottleneck (be sure you have binlog group commit) 
• InnoDB checksums : overhead (reasonable since crc32 is used) 
• innodb_flush_log_at_trx_commit = 1 : overhead + bottleneck 
• InnoDB double write buffer : KILLER ! overhead + huge bottleneck.. 

• need a fix / re-design / etc. in urgency ;-) 
• Fusion-io atomic writes is one of (true support in MySQL 5.7) 
• BTRFS / ZFS atomic writes 
• Using EXT4 with data journal is another one 
• but a true re-design is still preferable ;-)



Impact of “safety” options..

• OLTP_RW 32x10M-tables @Percona-5.6 
•  test cases:   trx=2 |  trx=1 + chksum=1  |  dblwr=1 |  trx=1 + chksum=1 + dblwr=1 

TRX=2                   TRX=1, cheksum=1          dblwr=1                 TRX=1,checksum=1,dblwr=1



Read+Write Workloads : InnoDB Flushing

• InnoDB Flushing... 
• 5.5 : no comments.. ;-) 

• io capacity !! 
• 5.6 :  

• Improved Adaptive Flushing (step 1) 
• Cleaner Thread 
• io capacity max !! 
• LRU depth !! 

• 5.7 : 
• multiple Cleaner Threads 
• improved LRU flushing 
• improved Adaptive Flushing Design (step 2)



InnoDB Flushing

DATA

Buffer Pool

Dirty Pages %

100%
 IO

 capacity 
> Flush List

Free Pages

O
n D

em
and... 

> LR
U

 List

REDO Logs

Max Age
Furious Flushing... 

> Flush List Oldest page



InnoDB Flushing

DATA

Buffer Pool

Dirty Pages %

100%
 IO

 capacity 
> Flush List

Free Pages

O
n D

em
and... 

> LR
U

 List

REDO Logs

According Age

Oldest page

A
daptive Flushing 

> Flush List



InnoDB Flushing

DATA

Buffer Pool

Dirty Pages %

100%
 IO

 capacity 
> Flush List

Free Pages

O
n D

em
and... 

> LR
U

 List

REDO Logs

According Age

Oldest page

A
daptive Flushing 

> Flush List

Dirty Pages LWM



InnoDB Flushing
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• REDO rate driven 
• LSN Age aware 
• the goal is not to flush 

as much as possible 
but rather flush  
enough to keep 
a room in REDO..

InnoDB Flushing Buffer Pool

REDO

REDO rate



• OLTP_RW Workload: 
• Same IO capacity 
• Different logic..

Adaptive Flushing: MySQL 5.6 vs 5.5



• dbSTRESS RW with spikes 
• having a big enough Checkpoint Age marge allowing to resist to spikes

InnoDB : Resisting to activity spikes in 5.6



RW IO-bound “In-Memory”

• Impact of the database size 
• with a growing db size the TPS rate may be only the same or worse ;-) 
• and required Flushing rate may only increase.. <= need parallel flushing ! 

• DBT2 workload : 
• 64 users, db volume: 50W, 100W, 250W, 500W



• REDO rate driven 
• LSN Age aware 
• 5.6 : 
• BP Instances are flushed  

sequentially.. 
• cannot follow high flushing 

demand.. 
 
 

InnoDB Flushing 5.6 Buffer Pool

REDO

REDO rate Oldest page



• REDO rate driven 
• LSN Age aware 
• 5.7 : 
• BP Instances are  

flushed in parallel !!!

InnoDB Flushing 5.7 Buffer Pool

REDO

REDO rate Oldest page

# Cleaners (configurable) Page Age is not uniform !!!



• REDO rate driven 
• LSN Age aware 
• 5.7 : 
• BP Instances are  

flushed in parallel !!! 
• Flushing rate 

is adapted to Age 
distribution within 
each BP instance !!!

InnoDB Flushing 5.7 Buffer Pool

REDO

REDO rate Oldest page

# Cleaners (configurable) Page Age is not uniform !!!



InnoDB Flushing in 5.7

• Considering Age distribution : 
• Parallel Only -vs- Parallel + Age aware



RW IO-Bound : Test your Filesystem before to deploy

• LinkBench 150G workload 
• test cases : “safety” options on 64usr, Fusion-io  
• EXT4 -vs- NVMFS -vs- XFS

EXT4                                               NVMFS                                            XFS



RW IO-Bound : Consider a fast storage

• InnoDB Flushing in MySQL 5.7 & storage: 
• DBT2 512Wx8, 64usr, each test first with 1 then with 4 cleaners 
• XFS@SSD | EXT4@SSD | XFS@LSI-F80 | EXT4@LSI-F80 

SSD                                     LSI-F80 flash



Read+Write Workloads : InnoDB Purge

• InnoDB Purge... 
• 5.5 : Purge Thread !!! ;-) 
• 5.6 : Multi-Threaded Purge + fix for purge lag code ! 
• 5.7 : UNDO space can be auto-dropped !! 

• monitor InnoDB History Length ALWAYS ! ;-) 
• if NO purge lagging : excellent! (& be happy! ;-)) 
• if purge is lagging : use a purge lag config setting.. (& wait for fix) 

• example of config for 5.6 and 5.7 to avoid purge lagging: 
• innodb_max_purge_lag = 1000000  (1M max, ex.) 
• innodb_max_purge_lag_delay = 30000000 
• innodb_purge_threads = 4



InnoDB : be sure your TPS is fair ;-)

• Purge lagging impact on IO-bound OLTP_RW 10Mx32-tab: 
• moving from 3200 to 4000 TPS... - cool, right? ;-)  but not fair...

 Purge lag...

 Growing TPS



RW related starter configuration settings

• my.conf :
!
  innodb_file_per_table 
  innodb_log_file_size=1024M 
  innodb_log_files_in_group=3 / 12 / ... 
  innodb_checksum_algorithm= none / crc32 
  innodb_doublewrite= 0 / 1  
  innodb_flush_log_at_trx_commit= 2 / 1 
  innodb_flush_method=O_DIRECT 
  innodb_use_native_aio=1 
  innodb_adaptive_hash_index=0 
!
  innodb_adaptive_flushing = 1 
  innodb_flush_neighbors = 0 
  innodb_read_io_threads = 16 
  innodb_write_io_threads = 16 
  innodb_io_capacity=15000 
  innodb_max_dirty_pages_pct=90 
  innodb_max_dirty_pages_pct_lwm=10 
  innodb_lru_scan_depth=4000 
  innodb_page_cleaners=4 
!
  innodb_purge_threads=4 
  innodb_max_purge_lag_delay=30000000 
  innodb_max_purge_lag= 0 / 1000000 
!
  binlog ?? 



OLTP_RW : 8-tables

• Sysbench OLTP_RW 1Mx8-tables  
• 12cores-HT 
• and the winner is: MySQL 5.5 !! ;-))



OLTP_RW : 8-tables (Sep.2015)

• Sysbench OLTP_RW 1Mx8-tables  
• 32cores-HT 
• and the winner is: rather MySQL 5.7 !! ;-))



OLTP_RW : 8-tables (Oct.2015)

• Sysbench OLTP_RW 1Mx8-tables  
• 32cores-HT 
• and the winner is: clearly MySQL 5.7 !! ;-))



OLTP_RW : 8-tables (Sep.2015)

• Sysbench OLTP_RW 1Mx8-tables  
• 40cores-HT 
• and the winner is: rather MySQL 5.7 !! ;-))



OLTP_RW : 8-tables (Oct.2015)

• Sysbench OLTP_RW 1Mx8-tables  
• 40cores-HT 
• and the winner is: clearly MySQL 5.7 !! ;-))



OLTP_RW : 8-tables (Oct.2015)

• Sysbench OLTP_RW 1Mx8-tables  
• 72cores-HT 
• and the winner is: clearly MySQL 5.7 !! ;-))



OLTP_RW : 1-table

• Sysbench OLTP_RW 10M 
• 12cores-HT 
• and the winner is: MySQL 5.5 !! ;-))



OLTP_RW : 1-table

• Sysbench OLTP_RW 10M 
• 32cores-HT 
• and the winner is: far MySQL 5.7 !! ;-))



OLTP_RW : 1-table

• Sysbench OLTP_RW 10M 
• 40cores-HT 
• and the winner is: far MySQL 5.7 !! ;-))



OLTP_RW : 1-table

• Sysbench OLTP_RW 10M 
• 72cores-HT 
• and the winner is: far MySQL 5.7 !! ;-))



RW Scalability Limits and Problems

• Show-stoppers : 
• REDO log (log_sys contention) : need a re-design.. 
• trx_sys, lock_sys  — blocking contentions after log_sys.. 
• DBLWR Buffer (not IO, but its internal locking) : need a full re-write.. 
• fil_sys mutex is limiting I/O operations rate.. 

• Pending problems : 
• InnoDB Purge may be lagging : need UNDO & co. re-design.. 

• workaround : tune max lag to not let History Length growing by write throttling 
• 5.7 : allocated UNDO space can be truncated !! (free your disk space) 

• huge impact of writes on reads 
• IO layers are needing yet more instrumentation / observability 
• AIO needs more control / tunable(s) 
• AHI re-design 
• go yet more far with Adaptive Flushing 
• etc. etc. etc…



InnoDB Compression

• Old compression : 
• compressing / uncompressing too often in RAM (CPU time) 
• the code maintenance becomes a true headache.. 
• compressed and uncompressed page images are often living in memory much longer than 

expected (so, using even more memory than “normal” pages).. 

• New “punch holes” compression : 
• doing it inn better way (compression is going on the IO level only) 
• so, same or better compression 
• but way better performance !! ;-) 
• works really well on Fusion-io NVMFS 
• seems to work well on EXT4 
• XFS seems to be buggy on punch holes support 

• Side note : native FS compression comes in the game too



INSERT Performance

• B-Tree impact + InnoDB data compactness.. 
• over a time of INSERTS, B-Tree is growing & growing.. 
• at some moment it’ll be out of memory.. 
• this will involve IO re-reads (mostly IO RR !!) 
• which will slowdown an overall performance.. 

• Workaround(s) 
• size a bigger memory for InnoDB Buffer Pool (BP) 
• use partitions : 

• this will keep an overall BTree(s) smaller 
• once you filled up a partition and switching INSERTs to the next one, the previous partition index 

data are no more required during INSERT, and BP will cache index pages mostly from the active 
partition.. 

• MySQL 5.8 : stay tuned ;-)



UPDATE Performance

• Low load : slower than in MySQL 5.6 
• pure overhead in many functions due code changes.. 

• Higher load : much better than in MySQL 5.6 
• so, have to manage to do more and more stuff in parallel !! 
• and this is a general tendency…



Test Case: Tuning UPDATE Performance

• Test conditions : 
• Workload : Sysbench UPDATE  
• CPU config : 12cores-HT 
• IO subsystem : EXT4 on SSD 
• Users : 8, 16, 32 .. 256



Test Case: Tuning UPDATE Performance (2)

• Tuning : 
• starting with REDO size=3GB, io capacity max=3000 
• Performance: looks poor.. 

8 users, 16.. 256 users..



Test Case: Tuning UPDATE Performance (3)

• Tuning : 
• moving to REDO size=8GB.. 
• Performance: looks better, but still poor on a higher load.. 



Test Case: Tuning UPDATE Performance (4)

• Tuning : 
• moving to REDO size=12GB.. 
• Performance: looks good, but Checkpoint Age continues to grow.. 



Test Case: Tuning UPDATE Performance (5)

• Tuning : 
• moving to REDO size=12GB.. 
• Performance: looks good, but Checkpoint Age continues to grow..  
• Analyze: up to 128 users all is going well.. 
• So, we have to reduce the user’s concurrency here



Test Case: Tuning UPDATE Performance (6)

• Tuning : 
• REDO size=12GB + innodb thread concurrency=32 
• Performance: just fine! ;-)



RW IO-bound

• Still data In-Memory, but much bigger volume : 
• more pages to flush for the same TPS rate 

• Data bigger or much bigger than Memory / cache / BP : 
• the amount of free pages becomes short very quickly.. 
• and instead of mostly IO writes only you’re starting to have IO reads too 
• these reads usually mostly random reads 
• if your storage is slow - reads will simply kill your TPS ;-) 
• if your storage can follow - once you’re hitting fil_sys mutex you’re done 
• as well LRU flushing may become very heavy.. 

• NOTE:  
• on Linux : using AIO + O_DIRECT seems to be the most optimal for RW IO-bound 
• but always check yourself ;-)



RW IO-bound “Out-of-Memory”

• The “entry” limit here is storage performance 
• as you’ll have a lot of IO reads.. 

• Once storage is no more an issue :  
• you may hit internal contentions (ex. InnoDB file_sys mutex) 
• or other engine design limitations.. 
• sometimes a more optimal config settings may help.. 
• but sometimes not ;-)



Analyzing DBT2-500W Workload @40cores-HT

• Mostly IO-bound (~100G database) 
• so, storage layer: Fusion-io flash, EXT4 

• Test cases : 
• engines: Percona Server 5.6 / MySQL 5.7 / MariaDB 10.1 
• concurrent user sessions: 64, 256 
• Buffer Pool size: 8G (LRU-bound) / 96G (Flushing-bound) 
• LRU depth = 4000 
• IO capacity = 15000 
• IO_DIRECT_NO_FSYNC + native AIO 
• REDO log size = 3 x 1GB 
• InnoDB thread concurrency = 0 / 64 
• InnoDB spin wait delay = 6 / 96 
• …



DBT2-500W Workload @40cores-HT

• LRU-bound (BP=8G): Final Results 
• engines: Percona Server 5.6 / MySQL 5.7 / MariaDB 10.1 
• TPS: Commit/sec



DBT2-500W Workload @40cores-HT

• LRU-bound (BP=8G): Final Results 
• engines: Percona Server 5.6 / MySQL 5.7 / MariaDB 10.1 
• QPS!



DBT2-500W Workload @40cores-HT

• LRU-bound (BP=8G): Final Results 
• engines: Percona Server 5.6 / MySQL 5.7 / MariaDB 10.1 
• Lock waits: index lock impact…



DBT2-500W Workload @40cores-HT

• LRU-bound (BP=8G): Final Results 
• engines: Percona Server 5.6 / MySQL 5.7 / MariaDB 10.1 
• up to 40K page reads/sec rate



DBT2-500W Workload @40cores-HT

• LRU-bound (BP=8G): Final Results 
• engines: Percona Server 5.6 / MySQL 5.7 / MariaDB 10.1 
• 900MB/sec I/O traffic



DBT2-500W Workload @40cores-HT

• Flushing-bound (BP=96G): Final Results 
• engines: Percona Server 5.6 / MySQL 5.7 / MariaDB 10.1 
• TPS: Commit/sec



DBT2-500W Workload @40cores-HT

• Flushing-bound (BP=96G): Final Results 
• engines: Percona Server 5.6 / MySQL 5.7 / MariaDB 10.1 
• QPS!



DBT2-500W Workload @40cores-HT

• Flushing-bound (BP=96G): Final Results 
• engines: Percona Server 5.6 / MySQL 5.7 / MariaDB 10.1 
• Lock waits: lock_sys mutex impact…



The Main MySQL Performance   
Best Practice #1 is... ???.. 

!

USE YOUR BRAIN !!!... ;-)

THE MAIN  
SLIDE! ;-))



So, work continues.. 
stay tuned... ;-)

Don’t miss MySQL Community Reception tonight !!!



Few words about dim_STAT (if you’re asking ;-))

• All graphs are built with dim_STAT (http://dimitrik.free.fr) 
• All System load stats (CPU, I/O, Network, RAM, Processes,...) 
• Manly for Solaris & Linux, but any other UNIX too :-) 
• Add-Ons for Oracle, MySQL, PostgreSQL, Java, etc. 
• MySQL Add-Ons: 

• mysqlSTAT : all available data from “show status” 
• mysqlLOAD : compact data, multi-host monitoring oriented 
• mysqlWAITS : top wait events from Performance SCHEMA 
• InnodbSTAT : most important data from “show innodb status” 
• innodbMUTEX : monitoring InnoDB mutex waits 
• innodbMETRICS : all counters from the METRICS table 

• And any other you want to add! :-)

http://dimitrik.free.fr


THANK YOU !!!

•  All details about presented materials you may find on:    

• http://dimitrik.free.fr - dim_STAT, dbSTRESS, Benchmark Reports, etc. 

• http://dimitrik.free.fr/blog - Articles about MySQL Performance, etc. 

http://dimitrik.free.fr
http://dimitrik.free.fr/blog

